Math 10A
Quiz 4; Tuesday, 7/2/2018
Time: 3 PM
Instructor: Roy Zhao
Name:

Circle True or False. (1 point for correct answer, 0 if incorrect)

1. True FALSE If we take $\lim _{x \rightarrow \infty} f(x)^{g(x)}$ and get 1^{∞}, then the limit is 1 .

Solution: We need to change it to use L'Hopital's Rule.
2. True FALSE If we take $\lim _{x \rightarrow \infty} f(x)^{g(x)}$ and get 0^{∞}, then we need to use L'Hopital's Rule.

Solution: The limit is then 0 .

Show your work and justify your answers. Please circle or box your final answer.
3. (10 points) (a) (3 points) Find $\lim _{x \rightarrow 0} \frac{x \tan x}{\sin 3 x}$.

Solution: Plugging in $x=0$ gives $0 / 0$ so using Lhopitals gives

$$
\lim _{x \rightarrow 0} \frac{x \tan x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{x \sec ^{2}(x)+\tan x}{3 \cos (3 x)}=\frac{0}{3}=0
$$

(b) (7 points) Sand is being dumped in a conical pile whose width and height always remain the same. If the sand is being dumped in at a rate of $5 \pi \mathrm{~cm}^{3} / \mathrm{min}$, how fast is the height of the sand changing when the pile is 10 cm tall?

Solution: Let the height of the pile be h. Then the radius of the pile is $r=\frac{h}{2}$ and the volume of the pile is $V=\frac{\pi r^{2} h}{3}=\frac{\pi h^{3}}{12}$. Taking the derivative gives $V^{\prime}=\frac{\pi}{4} h^{2} h^{\prime}$. Now we plug in 5π for V^{\prime} and 10 for h to get $h^{\prime}=\frac{20 \pi}{100 \pi}=\frac{1}{5}$ $\mathrm{cm} /$ min.

